Abstract 구글 딥마인드에서 제안한 기존 Perceiver의 단점을 보완한 모델입니다. Perceiver 모델은 어떠한 데이터 형태도 처리할 수 있으면서 계산과 메모리 사용이 입력 사이즈에 선형적으로 작동하지만(기존의 transformer는 데이터가 클 수록 느려짐) 간단한 output 형태만 출력이 가능했습니다. Perceiver IO 모델은 output도 latent space를 decoding 과정을 거쳐서 임의의 형태를 출력할 수 있도록 한 모델입니다. NLP, Vision, Audio나 Multi-modal 영역에서도 좋은 결과를 보였습니다. Perceiver IO Architecture 논문에서 제시하는 Architecture를 대략적인 과정을 설명하겠습니다. 크게 Encoding, Pr..