개요 2021년 3월 5일에 Facebook AI Research 팀에서 발표된 논문입니다. 논문 원제는 Self-supervised Pretraining of Visual Features in the Wild 입니다. arxiv.org/pdf/2103.01988v2.pdf 최근에 Self-Supervised Learning(자기지도학습) 분야는 꽤 발전해서 SimCLR, BYOL, SwAV의 방법들은 Supervised Learning과의 격차를 매우 좁혔습니다. 이 논문에서는 SElf-supERvised(SEER) 모델을 제시합니다. SEER는 Self-Supervised Learning 방법으로 SwAV를 사용하였고 모델 Architecture는 RegNetY를 사용하였으며 가장 큰 특징은 랜덤하게..